Random-Coding Lower Bounds for the Error Exponent of Joint Quantization and Watermarking Systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Joint Source-Channel Coding Error Exponent for Discrete Memoryless Systems: Computation and Comparison with Separate Coding

We investigate the computation of Csiszár’s bounds for the joint source-channel coding (JSCC) error exponent, EJ , of a communication system consisting of a discrete memoryless source and a discrete memoryless channel. We provide equivalent expressions for these bounds and derive explicit formulas for the rates where the bounds are attained. These equivalent representations can be readily compu...

متن کامل

Exact evaluation of the Random coding Error probability and Error Exponent

The Clipped union bound is generally used when coding theorems are proved with random coding. As noted by Shulman and Feder [1, Lemma A.2], if the codewords are triple-wise independent, the bound is tight up to factor 12 . In this paper we calculate the exact bound as a function of a CDF of the pairwise error of any word. The method assumes a general metric-based decoder and general channel. Ev...

متن کامل

On Random Coding Error Exponents of Watermarking Codes

steganography, watermarking, information hiding, error exponent, random coding Watermarking codes are analyzed from an informationtheoretic viewpoint as a game between an information hider and an active attacker. While the information hider embeds a secret message (watermark) in a covertext message (typically, text, image, sound, or video stream) within a certain distortion level, the attacker ...

متن کامل

Asymptotic Bounds on Optimal Noisy Channel Quantization Via Random Coding

Asymptotically optimal zero-delay vector quantization in the presence of channel noise is studied using random coding techniques. First, an upper bound is derived for the average r th-power distortion of channel optimized k-dimensional vector quantization at transmission rate R on a binary symmetric channel with bit error probability. The upper bound asymptoti-cally equals 2 ?rRg(;k;r) , where ...

متن کامل

Strong exponent bounds for the local Rankin-Selberg convolution

Let $F$ be a non-Archimedean locally compact field‎. ‎Let $sigma$ and $tau$ be finite-dimensional representations of the Weil-Deligne group of $F$‎. ‎We give strong upper and lower bounds for the Artin and Swan exponents of $sigmaotimestau$ in terms of those of $sigma$ and $tau$‎. ‎We give a different lower bound in terms of $sigmaotimeschecksigma$ and $tauotimeschecktau$‎. ‎Using the Langlands...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2009

ISSN: 0018-9448

DOI: 10.1109/tit.2009.2021383